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Abstract

Introduction: Raw spectral data from matrix-assisted laser desorption/ionisation
time-of-flight (MALDI-TOF) with MS profiling techniques usually contains complex
information not readily providing biological insight into disease. The association of
identified features within raw data to a known peptide is extremely difficult. Data
preprocessing to remove uncertainty characteristics in the data is normally required
before performing any further analysis. This study proposes an alternative yet simple
solution to preprocess raw MALDI-TOF-MS data for identification of candidate marker
ions. Two in-house MALDI-TOF-MS data sets from two different sample sources
(melanoma serum and cord blood plasma) are used in our study.

Method: Raw MS spectral profiles were preprocessed using the proposed approach
to identify peak regions in the spectra. The preprocessed data was then analysed
using bespoke machine learning algorithms for data reduction and ion selection.
Using the selected ions, an ANN-based predictive model was constructed to examine
the predictive power of these ions for classification.

Results: Our model identified 10 candidate marker ions for both data sets. These ion
panels achieved over 90% classification accuracy on blind validation data. Receiver
operating characteristics analysis was performed and the area under the curve for
melanoma and cord blood classifiers was 0.991 and 0.986, respectively.

Conclusion: The results suggest that our data preprocessing technique removes
unwanted characteristics of the raw data, while preserving the predictive
components of the data. Ion identification analysis can be carried out using MALDI-
TOF-MS data with the proposed data preprocessing technique coupled with bespoke
algorithms for data reduction and ion selection.

Keywords: MALDI-TOF, MS profiling, raw data, data preprocessing, stem cell,
melanoma

Tong et al. Clinical Proteomics 2011, 8:14
http://www.clinicalproteomicsjournal.com/content/8/1/14 CLINICAL

PROTEOMICS

© 2011 Tong et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:dong.tong@ntu.ac.uk
mailto:dong.tong@ntu.ac.uk
http://creativecommons.org/licenses/by/2.0


1. Introduction
Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI MS) based pro-

teomics is a powerful screening technique for biomarker discovery. Recent growth in

personalised medicine has promoted the development of protein profiling for under-

standing the roles of individual proteins in the context of amino status, cellular path-

ways and, subsequently response to therapy. Frequently used ionisation methods in

recent MS technologies include electrospray ionisation (ESI), surface-enhanced laser

desorption/ionisation (SELDI) and MALDI. Reviews on these methods can be found in

the literature [1,2]. One of the commonly used mass analyser techniques in proteomic

MS analysis is time-of-flight (TOF), the analysis based on the time measurement for

an ion (i.e. signal wave) to travel along a flight tube to the detector. This time repre-

sentation can be translated into mass to charge ratio (m/z) and therefore the mass of

the analyte. Data can be exported as a list of values (m/z points) and their relative

abundance (intensity or mass count).

Typical raw MS data contains a range of noise sources, as well as true signal elements.

These noise sources include mechanical noise that caused by the instrument settings,

electronic noise from the fluctuation in an electronic signal and travel distance of the

signal, chemical noise that is influenced by sample preparation and sample contamina-

tion, temperature in the flight tube and software signal read errors. Consequently, the

raw MS data has potential problems associated with inter- and intra-sample variability.

This makes identification/discovery of marker ions relevant to a sample state difficult.

Therefore, data preprocessing is often required to reduce the noise and systematic biases

in the raw data before any analysis takes place.

Over the years, numerous data preprocessing techniques have been proposed. These

include baseline correction, smoothing/denoising, data binning, peak alignment, peak

detection and sample normalisation. Reviews on these techniques can be found in the

literature [3-7].

A common drawback of these preprocessing techniques is that they normally involve

several steps [8,9] and require different mathematical approaches [10] to remove noise

from the raw data. Secondly, most of the publicly available preprocessing techniques

focuses on either SELDI-TOF MS, often on intact proteins at low resolution compared

to modern instrumentation [3,11] or liquid chromatography (LC) MS [12-14]. These

existing preprocessing techniques have limited functions which can be applied to high

resolution MALDI-TOF MS peptide data.

This paper proposes a simple preprocessing technique aiming at solving the inter-

and intra-sample variability in raw MALDI-TOF MS data for candidate marker ion

identification. In the proposed preprocessing technique, the data were aligned and

binned according to the global mean spectrum. The region of a peak was identified

based on the magnitude of the mean spectrum. One of the main advantages of this

technique is that it eliminated the fundamental argument on the uncertainty of the

lower and upper bounds of a peak. The preprocessed data is then analysed using

bespoke machine learning methods that are capable for handling noisy data. The panel

of candidate marker ions is produced based on their predictive power of classification.

For the remainder of this paper, we will first discuss the signal processing related

problems associated with MALDI-TOF MS data based on the instrumentation supplied
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by Bruker Daltonics. We then describe the data sets and the methodology for signal

processing and ion identification. We conclude with a discussion of the results.

2. Matrix assisted laser desorption and ionisation-time of flight mass
spectrometry (MALDI-TOF MS)
In recent years, MALDI-TOF has gained greater attention from proteomic scientists as it

produces high resolution data for proteome studies. There are three main challenges for

mining the MALDI-TOF MS data. Firstly, the data quality of MALDI-TOF is very much

dependent on the settings of the instrument. These settings include user-controlled

parameters, i.e. deflection mass to remove suppressive ions and the types of calibration

used for peak identification; and instrument-embedded settings, i.e. the time delayed

extraction which is automatically optimised by the instrument from time-to-time based

on the preset criteria in the instrument, peak identification protocols in the calibration

and the software version used to generate and to visualise MS data. These settings have

been altered, by either different users or by the instrument, to optimise detection of as

many peptides as possible for each experiment. Table 1 presents the implications of

some of the different instrument settings that may affect the quality of the final MS

spectra.

When different settings were used to process biological samples, the mass assignment of

a given m/z point will be shifted, in effect, causing a shift in mass accuracy through a

population. Although these variations are mainly caused by other mechanical settings,

such as the spotting pattern, instrument temperature, laser power attenuation and calibra-

tion constants; the lack of a standard protocol on the user-controlled setting will further

contribute to noise in the data. This makes the reproducibility of MALDI MS data low

resulting in difficulties in the analysis of consistent signals through a population. In addi-

tion to these settings, parameters such as mass detection range, sample resolution (sample

acquisition rate in GS/s) and the laser firing rate; as well as the way the sample being pre-

pared, i.e. homogeneity of crystallisation of the sample on the target plate, may also affect

quality of the finished MS data.

Secondly, the raw MALDI-TOF MS data contains high dimensionality data with a

small sample size - a hallmark for genomic and proteomic data. Each raw spectrum

contains tens to hundreds of thousands of m/z points, each with a corresponding sig-

nal intensity. Each m/z point in the raw spectral data merely represents a point in the

signal wave which contains little or no biological insight. Prior to the availability of

bioinformatics analysis, the candidate marker ion selection was performed based on

visual inspection for each sample over a population, thus, leading to the high potential

for human error and user bias, subsequently introducing flaws into the reported

results. Such problems pose challenges to the use of machine learning methods for ion

(peak) selection from raw MS data.

Thirdly, existing MALDI preprocessing techniques involve different mathematical

approaches in different machine learning methods. Unlike in genomics, the ideal pre-

processing techniques in proteomics is to effectively remove all types of uncertainty in

the raw MS data so that data reproducibility and spectral comparison can be per-

formed. A lack of standard procedures for “cleaning” the raw MS data results in several

preprocessing steps and different techniques were applied in these steps. Some exam-

ples include the use of 5-step data preprocessing, i.e. smoothing, baseline correction,
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Table 1 Examples of the experiments conducted using control samples with different settings applied in the MS instrument

Sample group Total samples Deflection mass
(user-controlled)

Delay time
(instrument-controlled)

Calibration standard
(user/instrument-controlled)

Total m/z points Intra-sample variation (in-between m/z ranges 800-3500)

Control
(Plate 1)

15 650 da 9993 ns Internal 198592 95223 points ± 824

Control
(Plate 2)

21 650 da 9993 ns Internal 198592 95213 points ± 3

Control
(Plate 3)

10 450 da 9999 ns Internal 198584 95200 points ± 825

Control
(Plate 4)

16 450 da 9999 ns External 198584 95199 points ± 3

Control
(Plate 5)

10 450 da 10003 ns External 198602 95211 points ± 3
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peak identification, normalisation and peak alignment, prior to peak selection and clas-

sification for MALDI-TOF MS data [8]; background noise filtering and data normalisa-

tion for SELDI-TOF MS data [3]; window-shifting binning and heuristic clustering to

align ESI Micromass Q-TOF MS data [12]; wavelet transform filtering to separating

background noise from the real signals for MALDI-TOF MS data [15] and SELFI-TOF

MS data [16]. As a consequence, preprocessing MS data is complicated and the pre-

processing step is vague.

Rather than further complicated the MS data analysis with complex steps in data

preprocessing technique, we propose a simple and effective preprocessing method to

preprocess high resolution MALDI-TOF-MS data. For our preprocessing technique, we

measure peak regions of MALDI-TOF MS spectral using a standard average function

applied to whole population of samples within the data.

3. Data sets
Two in-house raw MALDI-TOF MS data sets, each representing different sample types

(i.e. serum and plasma), were used. These data sets comprised melanoma sera data

categorised into stage 2 and stage 3 diseases, and cord blood plasma labelled based on

the quantity of CD-34 positive stem cells (High versus Low).

All clinical samples analysed as part of this study were collected under the appropri-

ate consent and given ethical approval.

3.1 Sample Preparation

The collected plasma and serum samples were stored at -80°C until analysis. The sam-

ples were diluted 1 in 20 with 0.1% Trifluoroacetic acid (TFA) before undergoing C18

clean up The reproducibility of Millipore C18 ZipTip refinement of blood derivatives has

been previously reported [17,18]. C18 ZipTips (Millipore) were conditioned on a robotic

liquid handling system (FluidX XPS-96 for the cord blood plasma samples or Proteome

Systems Xcise for the melanoma serum) using 3 cycles (aspirate and dispense) of 10 μL

80% acetonitrile, followed by 3 cycles of 10 μL 0.1% TFA. Sample binding consisted of

15 binding cycles of 10 μL, followed by 3 wash cycles of 10 μL 0.1% TFA and 15 elution

cycles of 8 μL of 80% acetonitrile. The eluted fraction was combined with ammonium

bicarbonate (16.6 μL of 100 mM), water (7.6 μL), and trypsin (0.7 μL of 0.5 μg/μL, Pro-

mega Gold dissolved in ammonium bicarbonate) and incubated at 37°C overnight. The

reaction was terminated with 0.5 μL of 1% TFA. Following this the samples underwent a

second ZipTip clean up (as previously) and 1 μL of the eluate mixed with 1 μL of CHCA

matrix and spotted directly onto a Bruker 384 spot ground steel MALDI target for

analysis.

3.2. Melanoma data set

Melanoma serum samples were selected from a frozen collection of sera banked at

Heidelberg University, Germany in the period from April 2002 to November 2004. The

pre-banked samples were made available via a collaborative study with Heidelberg Uni-

versity. One hundred and one adult patients (58 males and 43 females) with histologi-

cally confirmed as melanoma stage 2 (S2) or stage 3 (S3) sera were analysed, yielding

mass spectral data for 99 samples (49 samples in S2 and 50 in S3). Each sample con-

tains 198597 m/z points.
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3.3. Cord blood data set

Cord blood plasma was collected from Banc de Sang i Teixits (BTS), Barcelona and

shipped to the Anthony Nolan Trust cord blood bank at Nottingham Trent University.

We labelled the samples into two groups - Low (< 30 CD45 sidescatter low/CD34+

stem cells/μL blood) and High (~100 cells/μL) stem content. This collection of plasma

produced 158 samples, each associated with m/z points varies from 114603-114616.

Among 158 samples, 70 samples were categorised as containing a “High” number of

stem cells and the remaining 88 samples with a “Low” number of stem cells.

4. Methods
4.1. Data preprocessing

The proposed data preprocessing technique is based on the Occam’s razor principle to

avoid any unnecessary complexity applied to the complex MS data. We used SpecAlign

software [11] for data value imputation and average spectrum computation. Using the

average spectrum, we re-construct the peak regions for all spectra in the population.

Figure 1 outlines the workflow of our data preprocessing approach.

As illustrated in the figure, individual sample data were first merged into a single file

according to the identical m/z points presented across the whole population. The inter-

polation function, based on a polynomial distribution function (SpecAlign software), was

applied to insert missing values for missing m/z points in the spectra. An average spec-

trum was then computed and the m/z range 800-3500 is cropped for analysis in the next

phase. This yielded a smaller data dimension approximately 95000 m/z points, from the

original 2700001 points.

Using the average spectrum, we then compared the intensity of two m/z points and

assigned the values ‘0’ or ‘1’ to indicate the increase or decrease respectively to the

next adjacent m/z point in the merged file. Each time, 2 m/z points were used for

comparison. This process continued until there were no more adjacent m/z points for

comparison. The objective of such comparison was to reconstruct a Gaussian plot

based on the spectral signal across a population of spectra and to further determine

the region where a peak starts and ends. This point is worth emphasising as it simu-

lates what is actually seen by the proteomic scientists and subsequently, avoid any

form of confusion on the subject. This graph reconstruction could also minimise the

risk of assigning a peak region to the wrong bin. We deliberately use very simple

mathematical functions (i.e. mean and median) to avoid the possibility of a sophisti-

cated mathematical formula complicating MS data preprocessing. From this recon-

structed plot, we observed the pattern on both-tail (lower and upper boundary of a

peak region) of the curve and defined the adequate criteria based on the observation.

These criteria take account of the signal magnitude (peak size) and the maximum

number of m/z points in the peak region (m/z value). Using these criteria, we identified

the peak region, binned the m/z points within the region and standardised the peaks

using the median m/z value in each region. The average intensity value of the region

for each sample is used as the final values in the samples. This data preprocessing step

has identified approximately 3000 peaks for both MS data sets.

Peak region identification

MS data is extremely complex and there is the possibility of a given peak potentially

containing multiple peptide elements. There are also potential mass drift problems
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over multiple samples. Thus we defined peak regions based on the global average spec-

trum, computed from all of the samples in the population; rather than using the aver-

age spectrum computed from samples within the class. This global mean computation

approach provides full information on the pattern of signal processing as it takes

account of every intensity value appearing in the identical m/z points, regardless of the

class that the sample belongs to. Consequently, the implication of sample size effects

in statistical pattern recognition is significantly reduced and better accuracy on mass

range assignment can be achieved. However, a significant drawback of using the global

mean is that the accuracy of the pattern recognition in the signal processing will be

Figure 1 Schematic illustration of data preprocessing step.
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severely affected by outliers and this leads back to the question on the quality of the

MS data being analysed.

To alleviate the mass drift problem, we computed the global average spectrum using

interpolation function in SpecAlign software. This interpolation function has

embedded smoothing technique which automatically pre-filtered the data with 0.2 Da

bin size. Using the average spectrum, we then constructed a Gaussian plot represent

signal patterns in the population.

We observed a similar signal wave pattern on the average spectrum for both the data

sets. A long, uninterrupted sequence of ‘0’ value were found in each peak region in the

average spectrum provides us the cut-off proximity for lower boundary between peak

regions. When we visualised data values into a Gaussian plot, we observed that a peak

would normally begin with at least 3 consecutive ‘0’ values (the left-tailed of a curve).

Thus, we defined the lower boundary of a peak region based on the presence of at

least 3 consecutive ‘0’ values.

To define the upper boundary of a peak region, we take into consideration of signal

distortion and condition of the instrument. Observations on the upper boundary in the

Gaussian graph (the right-tailed of a curve) of the signal pattern for every 1000 Da

were performed. We observed that the variability on the signal (i.e. broader wave-

length) and the presence of mechanical noise on 5 m/z checkpoints, i.e. 800.00,

1400.00, 1900.00, 2400.00 and 3000.00. Using these checkpoints, we defined the upper

boundary of a peak region based on the minimum number of sign ‘1’ (i.e. decrement

signs) to be presented in each checkpoint.

4.2 Candidate marker ion identification

As illustrated in Figure 2, we first preprocess the raw MS data. The data preprocessing

steps was elaborated in length in the previous section. The data was then split into

training and blind sets based on a ratio of 70:30, i.e. 70% for model training and the

remaining 30% as a complete blind set to evaluate the performance of the model. A

hybrid genetic algorithm-neural network (GANN) algorithm was used to filter the

training set to identify a more focused subset of significant peaks. This peak subset

was then analysed using the stepwise artificial neural network (ANN) to identify the

most important peaks based on their predictive performance. This was represented by

a rank order. In the stepwise ANN, the training set was further split into 3 groups,

with the ratio of 60:20:20. A 60% of the data is used for training the network, 20% for

testing (i.e. early stopping criteria based on mean squared error (MSE) for ANN) and

the remaining 20% for validating the model. We re-sampled the data 50 times ran-

domly to obtain an unbiased panel of significant ions. Finally, we validate our panel

using the blind set. Subsequent sections discuss GANN and stepwise ANN.

4.2.1. Data reduction using genetic-algorithm-neural network (GANN)

Genetic algorithm-neural network (GANN) is the bespoke hybrid genetic algorithm

(GA) and artificial neural network (ANN) program that was developed for microarray

analysis [19-21]. The GANN algorithm is a form of co-evolution of two distinct objec-

tives, i.e. to find feature subset that enable an accurate classification for high dimension

data. To do so, GANN utilised the universal computational power of ANN to compute

the fitness score for GA and at the same time, GA optimises the ANN weights. Further
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information on GANN algorithm can be found in our previous study [22]. Table 2

summarises the GANN parameters used in this paper.

4.2.2. Ion identification and prediction using stepwise artificial neural network (ANN)

Stepwise artificial neural network (ANN) is another bespoke program that was devel-

oped for mass spectra analysis [23-25]. In the stepwise ANN model, a 3-layered

Figure 2 Schematic illustration of ion identification analysis for MALDI-TOF MS protein profiling.
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network architecture with a backpropagation learning algorithm was developed to train

the data sets. First, each variable (i.e. peak) from the data set was used as an individual

input to the network to create n individual network models with the structure of 1-2-

1. These n models were then trained using Monte-Carlo cross-validation process and

random sub-sampling to create 50 sub-models for each n model. The objective of

using such cross-validation and random sub-sampling processes is to produce an

unbiased set of predictive error rate for each variable in the data set. These models

were then ranked based upon their average predictive error rate from the test data

from each sub-model. The model with the lowest average predictive error identified

the most important single ion which was selected for inclusion in the subsequent addi-

tive step. Because of the incorporation of stepwise approach in our ANN algorithm,

the whole modelling process was looped with an increment of 1 as the input nodes to

the network architecture, i.e. 2-2-1 and so on. For each loop, the remaining inputs

were sequentially added to the previous best input, creating n+1 models each contain-

ing two inputs, until the predefined number of steps is met. Further information on

stepwise ANN algorithm can be found in our previous study [25]. Table 3 summarises

the stepwise ANN parameters used in this paper.

5. Results
To evaluate the performance of our methods for preprocessing raw MS data and iden-

tifying candidate marker ions, the data was split into 2 groups, i.e. training and blind

sets. The Monte-Carlo cross-validation (MCCV) was applied on the training set (as

illustrated in Figure 2) and the validation was performed using a separate blind data

set which is completely unknown to GANN and stepwise ANN. Table 4 summarises

the data sets and the classification results based on the independent blind data sets.

Table 2 Summary of the GANN parameters

Parameter Setting

Population size 300

Chromosome size 20 features

Chromosome
Encoding

Real-number representation

Fitness Function The total number of correctly labelled samples

Selection Tournament, tournament size = 2

ANN architecture 20-2-2

ANN size 48 nodes including 4 bias nodes

ANN learning
algorithm

Feedforward

ANN activation
function

Tanh

Crossover operator Single-point, Pc = 0:5

Mutation operator Pm = 0:1

Elitism strategy Retain N-1 chromosomes in the population, where N is the total number of
chromosomes in the population

Evaluation size 80000

Whole cycle repeat 5000
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5.1. Melanoma inter-stage differentiation

For the melanoma data set, high classification performance was achieved with a panel

of 10 ions identified by our model. Table 5 presents the rank order of the identified

ions based on the MSE values returned by stepwise ANN for each training subset. The

m/z value 1531.6 which is the first-ranked by our model shows a significant discrimi-

native power between classes. This ion alone provided a median accuracy of 93%

(result not shown) with an average test error rate of 0.097. With the identification of

second highly ranked ion, i.e. m/z value 2916.61, the average test error rate was

reduced to 0.054 and perfect median classification accuracy was achieved. Results show

the decrease in the test error rate with the increase of ions added to the panel. This

suggested that the synergistic nature of these highly ranked ions creates a strong statis-

tical discriminative power in differentiating stage 2 and stage 3 melanoma cancers,

which may also provide biological insight on the inter-stage tumour development in

metastatic melanoma. Results also show the possibility of local maximum phenomenon

on the fourth identified ion, i.e. m/z value 1196.57, in which slightly increased test

error rate on the subsequent identified ions.

We further examined the significance of these 10 ions using a set of 30 blinded sam-

ples on the previously trained 50 ANN sub-models (at 50 random sampling) and the

rates for false positives (FPR) and true positives (TPR) were calculated. Table 6 shows

the ANN prediction results based on the blind set. The blind set contains equal sample

Table 4 Summary of the data sets and the classification results based on 50 random
sampling

Data set Class Sample
type

Sample
size

Total
peaks

Training set (MCCV) Blind data
set

Train Test Validation

Melanoma S2 v. S3 Serum 99 2560 41 14 14 30

Classification (%) 93.21 97.38 90.62 90.93

Cord blood High v.
Low

Plasma 158 2647 67 22 22 47

Classification (%) 96.45 96.73 91.18 92.34

Table 3 Summary of the stepwise ANN parameters

Parameter Setting

ANN architecture I-2-1. For each run, the increment of 1 node in the input
layer, I

Search method Stepwise

ANN learning algorithm Backpropagation

ANN activation function Tanh

Learning rate 0.1

Momentum rate 0.5

Maximum epochs 3000

Window epoch 1000

Threshold for error 0.01

Random sampling 50

Maximum repeats on stepwise 10

Maximum loops on the whole modelling
process

10

Cross-validation Monte-Carlo with the ratio of 60:20:20
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Table 6 ANN prediction based on 30 blinded samples in the melanoma data set

50 ANN sub-models

Sample label S2 S3 ANN output Std err in 95% CI ANN classification Target output

Blind 1 50 0 0 0 S2 S2

Blind 2 50 0 0 0 S2 S2

Blind 3 50 0 0 0 S2 S2

Blind 4 50 0 0 0 S2 S2

Blind 5 0 50 1 0 S3* S2

Blind 6 40 10 0.200 0.115 S2 S2

Blind 7 50 0 0 0 S2 S2

Blind 8 50 0 0 0 S2 S2

Blind 9 46 4 0.080 0.078 S2 S2

Blind 10 50 0 0 0 S2 S2

Blind 11 42 8 0.160 0.106 S2 S2

Blind 12 47 3 0.060 0.069 S2 S2

Blind 13 50 0 0 0 S2 S2

Blind 14 49 1 0.020 0.040 S2 S2

Blind 15 0 50 1 0 S3* S2

Blind 16 0 50 1 0 S3 S3

Blind 17 0 50 1 0 S3 S3

Blind 18 0 50 1 0 S3 S3

Blind 19 0 50 1 0 S3 S3

Blind 20 0 50 1 0 S3 S3

Blind 21 5 45 0.900 0.087 S3 S3

Blind 22 0 50 1 0 S3 S3

Blind 23 0 50 1 0 S3 S3

Blind 24 5 45 0.900 0.087 S3 S3

Blind 25 0 50 1 0 S3 S3

Blind 26 0 50 1 0 S3 S3

Blind 27 0 50 1 0 S3 S3

Blind 28 0 50 1 0 S3 S3

Blind 29 0 50 1 0 S3 S3

Blind 30 0 50 1 0 S3 S3

S2 refers to the stage 2 of melanoma. S3 is the stage 3 of melanoma. ANN output is computed based on the average
performance from 50 random samplings. Std err with 95% CI refers to the standard error for ANN output in 95%
confident interval range. ANN classification indicates the final outcome of the model. Target output refers to the original
group to which the sample belongs to.

Table 5 List of the top-10 ranked ions for melanoma data set

Rank Ion (m/z) m/z (start) m/z (end) Ave. Train Error Ave. Test Error Ave. Valid. Error

1 1531.6 1531.12 1532.08 0.099 0.097 0.110

2 2916.61 2916.12 2917.1 0.0656 0.054 0.074

3 2425.27 2424.79 2425.75 0.0605 0.049 0.070

4 1196.57 1196.1 1197.04 0.0485 0.041 0.065

5 2917.59 2917.14 2918.05 0.050 0.045 0.054

6 1940.05 1939.57 1940.51 0.047 0.048 0.060

7 2426.25 2425.78 2426.71 0.036 0.037 0.063

8 1995.99 1995.51 1996.47 0.047 0.044 0.065

9 2543.07 2542.58 2543.57 0.038 0.043 0.072

10 1197.56 1197.06 1198.05 0.050 0.049 0.076
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size for both classes, i.e. 15 samples for each class. Using the 50 trained ANN sub-

models, we correctly classified 28 out of 30 blinded samples (90.93% classification

accuracy). The TPR and FPR for S2 and S3 are 83.2% and 1.33%, and 98.67% and

16.80%, respectively. The receiver operating characteristics (ROC) based on the predic-

tion performance of each training subset for 50 ANN sub-models was plot in Figure 3

and 3 the area under ROC curve (AUC) is 0.991. The results show that the proposed

preprocessing technique has successfully removing most of the noise from the original

data and ions with high predictive power on classification have been identified from

the preprocessed data.

5.2. Cord blood characterisation based on the quantity of stem cells

For the cord blood data set, our model has, again, achieved high classification perfor-

mance with 10 significant ions identified from a pool of 2647 peaks. Table 7 presents

the rank order of the selected ions for cord blood samples. Our model shows that the

m/z value 2914.5 has discriminated, on average, 95% of the samples in the test set,

with the average test error rate of 0.093. With the insertion of ions, i.e. m/z values

1062.6, 3058.5 and 1424.9, the average test error rate was significantly decreased to

0.029. This indicates that these ions are strong predictors for this data set. The test

error rate is further reduced to 0.022 when all 10 ions were used on classification of

111 training samples.

We next computed the TPR and FPR of the model based on these 10 ions on a set

of 47 blinded samples using previously trained 50 ANN sub-models. Table 8 shows the

ANN prediction results based on the blind set. Among the 47 blinded samples, 20

samples in High group and the remaining 27 in Low group. Using the 50 ANN sub-

models, we achieved classification accuracy of 92.34% on the blind set with only one

misclassification. The TPR and FPR for the Low group are 92% and 7.23%; and 92.76%

and 8% for the High group, respectively. We also plotted ROC, as showed in Figure 4.

Figure 3 ROC for model performance in the melanoma data set.
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The AUC of the ROC curve is 0.986. This further supports our methods are robust for

raw MS data preprocessing and significant ion selection.

6. Discussion
Unlike genomic data, raw MALDI-TOF MS spectral are characterised by a high

dimension of noise caused by varying factors, from instrument settings, sample pre-

paration, chemical noise, instrument temperature, and many more. As a result, a data

preprocessing technique is usually required to convert the raw data into knowledge for

further analysis. Currently, data preprocessing approaches for MS involve sophisticated

mathematical understanding and multiple preprocessing steps. There is a lack of stan-

dard guidelines for performing these steps, and variation is introduced depending on

user experience. Furthermore, existing publicly available MS preprocessing tools are

designed for either SELDI MS or LC-MS use, rather than for MALDI-TOF MS use.

Consequently, very limited functions of these tools can be used in MALDI-TOF MS

data analysis. Thus, we have developed an in-house data preprocessing approach for

removing inter- and intra-sample variability problems in raw MALDI-TOF MS data.

Our data preprocessing approach followed the Occam’s razor principle, in which we

deliberately used standard mathematical operators, i.e. mean and median, to compute

average spectrum for all samples in the data sets. We utilised the interpolation function

provided in SpecAlign software to alleviate mass drift problem. Based on this average

spectrum, we re-constructed the signal pattern of the spectra and this re-construction

provided the information on the peak regions that are likely to be appeared in all spectra

across the population. We then applied a GANN algorithm to perform data reduction

and a stepwise ANN algorithm for ion identification.

A potential difficulty with our data preprocessing approach is the choice of an appro-

priate mathematical operator to be used for intensity value computation for each peak

region. We conducted 2 sets of experiments using 2 standard mathematical operators,

i.e. mean and maximum operators. Using the maximum operator, we were not able to

identify a strong predictive feature subset. We believe that this is due to data homoge-

neity caused by preprocessing (i.e. when the two classes are very similar having very

few or no identifiable discriminating features), as we used only the maximum intensity

values for each sample within a peak region and this lead to the equalisation of data in

both classes. As a result, what was originally a strongest prediction feature became of

equal significance to secondary or less significant features. To avoid data homogeneity,

Table 7 List of the top-10 ranked ions for the cord blood data set

Rank Ion (m/z) m/z (start) m/z (end) Ave. Train Error Ave. Test Error Ave. Valid. Error

1 2914.5 2913.96 2915.01 0.090 0.093 0.095

2 1062.6 1062.01 1063.28 0.033 0.030 0.042

3 3058.5 3058.04 3058.94 0.042 0.032 0.038

4 1424.9 1424.42 1425.42 0.030 0.029 0.047

5 3460.8 3460.32 3461.31 0.026 0.027 0.035

6 3061.5 3060.99 3061.92 0.027 0.025 0.045

7 2081.1 2080.59 2081.63 0.027 0.031 0.047

8 2369.3 2368.86 2369.75 0.023 0.025 0.050

9 1073.6 1073.19 1074 0.023 0.025 0.050

10 3062.4 3061.96 3062.93 0.019 0.022 0.032
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Table 8 ANN prediction based on 47 blinded samples in the cord blood data set

50 ANN sub-models

Sample label High Low ANN output Std err in 95% CI ANN classification Target output

Blind 1 48 2 0.040 0.057 High High

Blind 2 50 0 0 0 High High

Blind 3 50 0 0 0 High High

Blind 4 50 0 0 0 High High

Blind 5 50 0 0 0 High High

Blind 6 50 0 0 0 High High

Blind 7 35 15 0.300 0.132 High High

Blind 8 50 0 0 0 High High

Blind 9 48 2 0.040 0.057 High High

Blind 10 41 9 0.180 0.111 High High

Blind 11 48 2 0.040 0.057 High High

Blind 12 50 0 0 0 High High

Blind 13 40 10 0.200 0.115 High High

Blind 14 50 0 0 0 High High

Blind 15 46 4 0.080 0.078 High High

Blind 16 49 1 0.020 0.040 High High

Blind 17 50 0 0 0 High High

Blind 18 50 0 0 0 High High

Blind 19 41 9 0.180 0.111 High High

Blind 20 28 22 0.440 0.143 High High

Blind 21 50 0 0 0 High High

Blind 22 11 39 0.780 0.120 Low Low

Blind 23 0 50 1 0 Low Low

Blind 24 0 50 1 0 Low Low

Blind 25 2 48 0.960 0.057 Low Low

Blind 26 2 48 0.960 0.057 Low Low

Blind 27 0 50 1 0 Low Low

Blind 28 0 50 1 0 Low Low

Blind 29 0 50 1 0 Low Low

Blind 30 0 50 1 0 Low Low

Blind 31 0 50 1 0 Low Low

Blind 32 0 50 1 0 Low Low

Blind 33 0 50 1 0 Low Low

Blind 34 0 50 1 0 Low Low

Blind 35 2 48 0.960 0.057 Low Low

Blind 36 34 16 0.320 0.135 High* Low

Blind 37 19 31 0.620 0.140 Low Low

Blind 38 0 50 1 0 Low Low

Blind 39 5 45 0.900 0.087 Low Low

Blind 40 16 34 0.680 0.135 Low Low

Blind 41 0 50 1 0 Low Low

Blind 42 8 42 0.840 0.106 Low Low

Blind 43 5 45 0.900 0.087 Low Low

Blind 44 0 50 1 0 Low Low

Blind 45 0 50 1 0 Low Low

Blind 46 0 50 1 0 Low Low

Blind 47 0 50 1 0 Low Low

High and low refer to the quantity of stem cells in cord blood. ANN output is computed based on the average
performance from 50 random samplings. Std err with 95% CI refers to the standard error for ANN output in 95%
confident interval range. ANN classification indicates the final outcome of the model. Target output refers to the original
group to which the sample belongs to.
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we have decided to use average function in this study. The average function takes

account of every m/z point inside the peak region and this preserves predictive feature

set within the data; however, a potential drawback is that noise still exists in the data.

Therefore, we used GANN and stepwise ANN for feature selection and classification.

GA and ANN are two widely used methods for handling noisy and complex data. We

applied MCCV and random sampling techniques to minimise the risk of over-fitting in

the ANN and to obtain unbiased rank order of the markers.

Another potential issue with our methods is elucidating its potency for identifying

interesting features from the MS data. To overcome this problem, we produced a list

of ions ranked by their significance (i.e. mean squared error) to the classification.

Using this list, we observed that little or no improvement on the error after the first

10 ions. These ions have provided the potential for cost effective biomarker identifica-

tion. Although for the melanoma data, the error started to increase after the first 7

ions, the increment is not obvious and it is difficult to draw a solid conclusion on

whether or not it is a premature convergence (i.e. local maxima) or the model was

over-fitted. When we validated these 10 ions using the complete blind data sets, we

were able to correctly classify more than 90% of the blinded samples for both the data

sets with reasonably low FPR and high TPR. For the melanoma data set, we obtained

FPR of 1.33% for S2 and 16.8% for S3, based on the 10 ions selected by our model. For

the cord blood data set, we achieved FPR of 7.23% and 8% for L (low) and H (high)

groups, respectively. We also performed ROC analysis based on the classification per-

formance of each sample in 50 random sampling and > 0.9 AUC values were achieved.

This supports the potential use of our methods as a pre-screen to routine biomarker

identification.

As the main purpose of this paper was to evaluate our methods for selecting statisti-

cally significant ions from high resolution MALDI-TOF MS data, we did not include

biological assessment on the identified panels due to time and financial constraints.

Figure 4 ROC for model performance in the cord blood data set.

Tong et al. Clinical Proteomics 2011, 8:14
http://www.clinicalproteomicsjournal.com/content/8/1/14

Page 16 of 18



We believe we have offered an alternative solution for the identification of candidate

markers based on differential analysis of MALDI-TOF MS data. Our data preproces-

sing approach was simple and yet effective for removing most of the uncertainty values

from the raw data. Our bespoke algorithms are robust for handling noisy data and cost

effective for candidate marker selection. For future work, studies of biomarker valida-

tion on the identified panels will be performed to support our methods as a pre-

screening method to routine biomarker identification.
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